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ABSTRACT 

A program of measurements is reported showing the effects on an 

antenna caused by a plasma in the near field. The measurements were 

performed with X-band apertures in ground planes exposed to plasmas in 

a la-inch shock tube and in an RF-heated plasma jet. 

The effects of plasma on the antenna reflection coefficient were 

measured in a series of shock-tube firings at two different collision 

frequencies. In the plasma jet, where the plasma layer over the antenna 

was thin compared with a wavelength, both reflection coefficient and 

total impedance were measured. 

Patterns were measured in the plasma jet over a large range of 

electron density. E n addition it was demonstrated that an over-dense 

plasma layer in the near field reduces the far-field radiation level by 

at least 10 dB more than the same layer located just outside the near 

field3 

All these measurements show that the small boundary region near 

the ground plane, where electron density falls essentially to zero, 

significantly influences the plasma effects compared with predictions 

based on a uniform plasma. 
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I INTRODUCTION 

This report covers the second one-year study program by Stanford 

Research Institute (SRI) deaiing with the effects of a plasma in the _Py.--. 
near-zone field of an antenna. Of particular interest are (1) the ;~..---P.. .-.I_ <- 
ability to deduce properties of the plasma by terminal impedance measure- -- ------ .- .__. -. 
ments on the antenna, and (2) the ability of the antenna to radiate in 

the presence of a plasma in its near field. A concurrent study of DC --- - ._-.-- -.. 
probe diagnostics is now in progress in this laboratory. " These problems 

are being studied in re-entry flight test programs. These programs are 

being carried out in conjunction with the Re-entry Attenuation Measurement 

(RAM) Project of NASA-Langley Research Center. 

One of the attributes of diagnostics by flush-mounted RF apertures is 

that the fields do not perturb the plasma. However, the accuracy in deter- 

mining the plasma properties by terminal impedance measurements has been 

questioned in the past for two reasons: 

(1) The impedance model used for interpreting the measurements 
is considered inadequate; and 

(2) The spatial resolution tlcelp' is the entire near-field 
region. The effects of-any nonuniformity in the plasma 
in this region will be integrated in the terminal 
impedance measurement. ~- .- 

The first year of the program 1t was devoted largely to small loops and 

dipoles. It was shown both experimentally and theoretically that because 

of ohmic dissipation in the plasma by currents associated with near 

fields, only a fraction of the power delivered by loops and dipoles to 

the surrounding media is radiated into a propagating wave. It was 

found that this fraction has a minimum value at plasma electron resonance, 

but the effect is usually overwhelmed by the conventional attenuation of 

the propagating wave when plasma density exceeds critical. 

* 
SRI Project 5771 under contract NASl-4872 

t Numbered references appear at end of text. 
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The emphasis of the second-year program reported here has been on 

measurements with radiating rectangular apertures with at least one 

dimension of the same order as the wavelength. Such aperture antennas 

are typical of those used for RF diagnostics of plasmas. A program of 

impedance measurements was initiated as a companion to a concurrent 

theoretical program at NASA-Langley Research'Center. In addition, since 

the larger radiators generally have more directivity than the small 

antennas, the effect of the plasma upon the pattern becomes important 

in evaluating such antennas for transmitting. A series of tests was 

initiated with emphasis upon possible transmission parallel to the 

ground plane between the metal and plasma. 

The measurements in the earlier program with loops and dipoles were 

made in seeded hydrocarbon flames at L-band frequencies such that the 

ratio of collision frequency, v, to angular microwave frequency, w, was 

of the order of unity. The new measurements reported here were made at 

X-band frequencies in two different facilities, a la-inch arc-driven 

shock tube and an RF-heated plasma jet. They were operated in pressure 

regimes such that V/W varies between 10 -3 and 4 x 10 -1 , giving more 

reactive plasmas than is possible in the flames. 

Section II is a short description of these facilities and the 

equipment used in them for the primary measurements. Section III 

describes the diagnostic measurements made in both facilities. Sections IV 

and V present the results of the measurements of impedance, and of pat- 

terns and transmission efficiency, respectively. 

The author is grateful to T. Morita, W. E. Scharfman and J. B. Chown 

of SRI and to W. F. Croswell of NASA Langley Research Center for many 

helpful discussions and suggestions. The measurements were capably per- 

formed by R. J. Mora and J. W. Granville. 



II DESCRIPTION OF FACILITIES AND EQUIPMENT 

Twelve-Inch Shock Tube 

Reflection coefficient measurements of an open X-band waveguide 

terminated in a ground plane were made in an arc-driven shock tube with 

a la-inch test section. The tube is patterned after the Camm and Rose' 

tube, and its performance capabilities are reported in detail in 

Reference 3. The tube is capable of producing shocks with electron 

density several orders of magnitude above and below the critical level 

for X-band frequencies. Figure 1 is a photograph of the installation 

in the shock tube for some of the earlier measurements. The ground 
plane was placed parallel to the flow, and the leading edge was made sharp 

in order to minimize the effects on the flow. The free-stream electron 

density was inferred from wire probes collecting saturation ion current. 

The reflection coefficient was measured by monitoring the. calibrated - .- _.~ - _.____ _ ~_..__ 
output of a directional coupler sampling the reflected power. Both 

the reflected signal and ion current were displayed as single-sweep 

oscilloscope traces. The most satisfactory measurements were made 

when the arrangement shown in Fig. 1 was altered such that the probe 

was immediately downstream of the aperture and the long aperture dimen- 

sion was re-installed parallel to the flow in the tube. Two series of 

measurements were made, one with an initial pressure of 0.1 torr and 

the other, 1.0 torr. For the low-pressure shots, the aperture was 

covered with 0.003-inch thick Mylar tape to give a discrete boundary 

between the plasma outside' and air inside. For the higher-pressure 
shots, the tape required support by a block of polyfoam fixed inside 

the waveguide. 

RF-Heated Plasma Jet 

Impedance, transmission, and pattern measurements were made in the 

electrodeless plasma jet (Fig. 2). Three different X-band antennas were 

exposed to the stream of low-pressure argon that is heated and ionized 
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FIG. 1 X-BAND ANTENNA INSTALLATION IN SHOCK TUBE 
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essentially by .a combination of the conventional glow discharge and 

induction, or ring, discharge. The argon is introduced through a water- 

cooled quartz tube which is inside a five-turn solenoid portion of an 

LC tank circuit resonant at 14.6 MHz. A glow discharge is produced by 

moderate power (< 100 watts) delivered to the circuit via coaxial trans- 

mission lines from a radio transmitter capable of delivering up to 

15 kW of power. This discharge produces sufficient ionization that 

when higher power is delivered to the circuit, the RF magnetic field 

of the solenoid induces in the conducting gas RF currents that are 

great enough to produce ohmic heating and further ionization of the 

gas. Both electron density and electron temperature are higher than 

equilibrium with the gas temperature when argon is used. 

The stream was directed by a quartz extension tube with an oval 

opening toward the antenna near the center of the large Pyrex vessel. 

The shaped plasma slab extended about 4 cm on each side of the aperture. 

The electron density along the propagation axis (@ = 0') is nonuniform 

in a manner similar to boundary layers on re-entry vehicles, exhibiting 

a simple maximum at various distances from the ground plane. Some 

profiles are shown in Section III. The electron density in the stream 

above the mouth of the extension tube falls typically by a factor of 

l/2 in the first 7 cm above the mouth. A convenient control of electron 

density levels passing over the aperture was achieved by varying the 

flow velocity of the argon introduced into the plasma generator. For 

a given amount of RF power delivered to the generator, a range of elec- 

tron density of about one order of magnitude could be realized by this 

technique, In all these measurements, the static pressure in the vessel 

was maintained at 0.5 to 0.7 torr by the Roots-blower booster pump with 

a 115O-CIM capacity. The diagnostics with double- and single-wire 

probes are discussed in Section III, Figure 3 is a photograph of the 

plasma jet used for a prior experiment with an L-band antenna located 

well below the center of the Pyrex chamber. 

The open waveguide terminated with a ground plane was used in this 

facility. A 0.014-inch thick Mylar sheet covered the entire plane. 

In addition, two dielectric-loaded slot antennas with ground plane 
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FIG. 3 PHOTOGRAPH OF PLASMA JET, SHOWING FLOW OVER ANTENNA FACE (Cente, 
14-MHz TUNING AND MATCHING SYSTEM (Bottom), AND PROBE SUPPORT ROD 
(Running Vertically Through Center) 
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were used in the plasma jet. One is a radiating section of waveguide 

filled with Teflon (Fig. 4). The larger waveguide dimension was reduced 

commensurate with the dielectric constant of Teflon, and the dimension 

parallel to the E-plane was reduced to 2 mm to encourage high near 

fields around the aperture. The pattern studies were made in the 

E-plane of this antenna. Figure 5 is a photograph of this antenna with 

both plasma and ion probe over the small aperture. 

The third antenna used was a section of standard X-band waveguide 

radiating through a half-wave window made of boron nitride (BN), 

terminated with a metal ground plane (Fig. 6). The measurements 

were made at 9.375 GHz with the two dielectric-loaded antennas, and 

at 10.0 GHz with the open waveguide. 

The impedance measurements were made using a standard X-band 

slotted line. For standing wave ratios2 8, the ratios were not 

measured directly, but were computed from the measured 3 dB-width at 

the minima. The pattern and transmission measurements utilized a 

small receiving horn nine inches from the aperture as illustrated in 

Fig. 2. The use of tunnel diode detectors for the thousand-cycle- 

modulated X-band signal followed by low-pass filters allowed a 40 dB 

dynamic range above noise for the pattern and transmission measurements 

despite the presence of strong 14 MHz fields throughout the room. 
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III PLASMA DIAGNOSTIC METHODS 

Shock-Tube Diagnostics 

The free-stream electron density in the 0.1 torr shock-tube firings 

was inferred from saturation ion current collected by wire probes of 

O.Ol-inches diameter placed perpendicular to the tube flow. The ion 

current is free-molecular but is dominated by the directed flow of the 

tube under these conditions, The relationship between the electron 

density and the collected current is not linear because of the ion 

sheath, and is discussed in detail in Ref. 4. This method of determin- 

ing electron density has been cross-checked by RF interferometer 

measurements in the range of interest for these shots and was found to 

agree within 30%. The same method was used with 0.002-inch diameter 

wires for the 1.0 torr shots with less consistent success from shot to 

shot. The accuracy under these conditions has not been checked by RF 

techniques, although the levels inferred have generally agreed with 

the equilibrium density predicted on the basis of the locally-measured 

shock velocity and initial pressure. 

The average electron collision frequency was calculated from 

gas-dynamic charts giving the equilibrium density and temperature of 

the air behind the shock corresponding to the measured initial pressure 

and shock velocity. This method is considered accurate to within 209. 

A study of the shock-tube boundary layer electron density over a 

flat plate was made for various levels by Bredfeldt.5 One set of 

measurements was made under conditions pertinent to the O.l-torr shots 

in the neighborhood of 10 12 3 electrons/cm . The measured profile is 

shown in Fig. 7 (profile 1). Since the boundary layer thickness varies 

as the square root of the distance from the leading edge, the profile 

shown in Fig. 7 was adjusted slightly to account for the difference 

between the distance in the initial measurement and that for our 

application. It would be expected that the profile shown would be 

12 
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scaled down by a factor 01 about three for the l.O-torr shots, although 

thcrc arc no measurements to corroborate this. 

Plasma-Jet Diagnostics 

Ion current measurements were made with a pair of O.Ol- X 0.25-inch 

iridium wire probes supported, as photographed in Fig. 5, such that ele- 

vation and azimuth angle could be varied using a horizontal arm fixed 

for a given set of measurements, Since the only important gradients in 

electron density near the aperture were those perpendicular to the 

ground plane, the only profiles measured regularly were along this 

direction, taken directly in front of the aperture center. 

Saturation ion current was attained by using a 15-volt bias between 

the two wires. Corrections were made on the basis of Hok's theory6 for 

the fact that the ions are collected over the larger area of the ion 

sheath than that of the wire probe, and the subsonic flow was low enough 

to have a negligible effect on ion collection. Originally, estimates of 

the electron temperature around 2000'K in the argon were used. However, 

it became apparent, from the RF effects observed in the inferred range 

of 10 11 elec/cm 3 and below, that the electron density must be higher than 

calculated by the assumed temperature. Instrumentation was then put to 

use to measure the full double-probe characteristic, and it was found 

that, depending upon the flow velocity and input HF power, the electron 

temperature in front of the aperture varied typically between 500' and 

1500'K. Wh& these values were used in connection with the sheath 

correction, the original lower values of electron density were found to 

be too low by as much as a factor of three. The circuitry used for the 

double probes was similar to that of Scharfman' except that a triangular- 

wave generator was used for sweeping. Figure 8 is a photograph of sample 

data. 

The width of the oval mouth of the quartz extension tube was an 

important parameter in the experiments. Several different widths were 

used, ranging from about 0.6 cm to 2.0 cm. The profiles shown in Fig. 7 

show that, for a given density at the profile maximum, the narrower tube 

14 



TA-5514-21 

FIG. 8 DOUBLE-PROBE CURRENT CHARACTERISTIC 
TAKEN IN PLASMA JET WITH SIMULTANEOUS 
TRIANGULAR-WAVE DRIVING VOLTAGE 

mouth gives a steeper gradient in electron density, putting the maximum 
closer to the aperture when the quartz was placed directly against the 

face of the antenna. 

The collision frequency in the plasma jet was estimated by first 

estimating the argon temperature profile, and from that and the static 

pressure deducing the argon density profile, hence collision frequency. 

The estimates for our conditions vary between 3 X and 6 X 10 -3 W, 

depending also upon the power and argon flow velocity. However, a 

factor of two variation in v/m is undiscernible in most plasma effects 

on microwaves when v/w < 10 -1 . 

It is interesting that, despite the large gradients in electron 

density perpendicular to the ground plane, the electron temperature 

was found to be perfectly constant along this axis within the limits 

of error of the double-probe measurement -- about 10% for this range. 

Such measurements are consistent with the theory of very efficient 

thermal transfer within the electron gas. 
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IV RESULTS OF ADMITTANCE MEASURJQdENTS 

Reflection Coefficient Measurements 

Figure 9 is a photograph of some of the raw data taken in the 

shock-tube reflection coefficient tests. Although the two traces repre- 

sent a continuum of values over a considerable range, discrete pairs 

of corresponding points were chosen at regular intervals for transform- 

ing the raw data into instantaneous, matching values of voltage reflec- 

tion coefficient, lrl, and (~~/w)~, where u) 
P 

is the angular electron 

plasma frequency. The results of this and four other firings at 0.1 

torr initial pressure are plotted in Fig. 10. The solid line is the 

prediction by the Compton theory 8 for a uniform semi-infinite plasma 

over the aperture, corresponding to the measured collision frequency 

ARRIVAL OF 
SHOCK FRONT AT 

ION PROBE 

T TIME - 

ARRIVAL OF 
SHOCK FRONT AT 

X-BAND APERTURE 

FIG. 9 SIMULTANEOUS RECORDING OF ION PROBE CURRENT (top trace) 
AND REFLECTED X-BAND SIGNAL DURING A SHOCK TUBE FIRING 
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ratio, v/w = 6 x 10 -2 . Although according to Sec. III the error in 

determining (w~/w)~ may be as great as 30$, the small scatter in the 

data shown in Fig. 10 indicates that if the error is indeed this large 

it must be systematic rather than random from point to point or shot to 

shot. However, it appears that more than a 304 horizontal shift is 

required to reconcile the experimental and theoretical results. 

The observation that the reflection coefficient is a sensitive function 

of small nonuniformities near the aperture appears confirmed by the measure- 

ments in the plasma jet. The reflection coefficient of the Teflon antenna 

at, for example, ((u,/lo)z = 2 varied between 0.70, when the maximum in 

the profile was about 6 cm from the face, and 0.86, when the maximum 

was only 4 cm from the face. Similarly, a metal reflector placed only 

fractions of wavelengths from the antenna face can effect only limited 

reflection coefficients, as shown in Fig. 11. The consistency of these 

results is probably attributable to leaking of radiation through the 

narrow llboundarylt layers. The measured points from the shock-tube tests 

were corrected for the losses in the guide evidenced by the 0.94 reflection 

coefficient in Fig. 11 for t = 0 (shorted aperture). 

0 0.5 1.0 1.5 2.0 2.5 
t -mm 

TA-55,*-l, 

FIG. 11 REFLECTION COEFFICIENT MEASURED IN SHOCK TUBE INSTALLATION 
AS A FUNCTION OF THICKNESS OF MYLAR SEPARATING METAL 
REFLECTOR AND GROUND PLANE 
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Also shown in Fig. 10 are the results of the reflection coefficient 

measurements with the open waveguide in the plasma jet with profiles 

similar to 3a and 3b in Fig. 7. Although the collision frequency is 
lower in this facility, little effect is expected for these differences 

when v/u, < 10. However, significant, unexplained differences are 
obvious in the results. Although the plasma jet provides a less uniform 

plasma than the shock tube, the reflection coefficient appears more 

sensitive to given values of electron density at the profile maximum than 

to corresponding free-stream values in the shock tube. 

Because of the great sensitivity to boundary layer thickness shown 

in these measurements, and in light of the boundary-layer profile shown 

in Fig. 7 for the shock tube, it appears that a theory for the nonuniform 

plasma layer will be necessary for comparison with the measured results 

in Fig. 10. 

The results of the l.O-torr shots in the shock tube are shown in 

Fig. 12. It was expected that, since the boundary-layer profile would 

be scaled down by a factor of three, these shots would agree better with 

the corresponding theory. This appears to be the case only in the 

region 0.4 < (wp/W)2 < 2. Above this region, the same "saturationtt 

effect appears to obtain as in the lower-pressure shots. Inexplicably, 

the data scatter is greater for these shots than at 0.1 torr. 

Figure 13 shows some of the plasma jet reflection coefficient 

measurements with the other two antennas confronted with plasma profiles 

similar to 2a in Fig. 7. Figure 7 also shows how the normalized plasma 

phase constant p/p,, varies with (w,/w)~ since b/p0 is identical to the 

plane-wave conductance of the plasma (normalized to free-space admittance, 

377 
-1 mhos). In view of this variation, it is reasonable to expect the 

observed impedance changes to start around (ub/~)~ RS 10-l. 

Comnlete Admittance Measurements 

Five of the reflection coefficient points in Fig. 10 from the 

plasma-jet tests on the open waveguide are companions to the complete 

addmittance data for five values of (w~/Lu)' shown in Fig. 14. For 

19 



0.6 

0.7 

I 

0 

0.6 

ll-I 0.5 

0.4 

0.3 

0.2 

0.1 

0 

CL 0 0 

I 1 I Illl1. I I I I II_1 L 

lOA I IO 

(Q)PP 1’ FREE-STREAM 
TI-,,I.-,” 

FIG. 12 REFLECTION COEFFICIENT DATA FROM SHOCK 
TUBE (1.0 torr) COMPARED WITH THEORY 

20 



0.9 

0.7 

0.6 

Il-1 0.5 

0.4 

0.3 

0.2 

0.1 

0 

- 

BEST FIT - TEFLON 

0 MEASURED POINTS -TEFLON ANTENNA 
- A MEASURED POINTS - BN ANTENNA 

I o-1 
( wp/w)’ AT MAX 

I 

1 . 

I 

TEI-5514-10 

FIG. 13 REFLECTION COEFFICIENT OF TEFLON AND BN ANTENNAS ON PLASMA 
JET COMPARED WITH PLASMA PHASE CONSTANT ,!3/&, 

21 



GN -COMPTON THEORY GN -COMPTON THEORY 

-0.2 -0.2 - - 

BN -COMPTON BN -COMPTON THEORY THEORY 
-0.4 -0.4 - - 

0 0 MEASURED MEASURED POINTS- -0.6 -0.6 POINTS-GN GN - - 

0 0 MEASURED MEASURED POINTS-& POINTS-& 

-0.0 -0.0 - - 

- I .o - I .o I I I I I I I I I I I I 
0 0 0.2 0.2 0.4 0.4 0.6 0.6 0.0 0.0 I I .o .o 1.2 1.2 1.4 1.4 

PPPY PPPY 
AT MAX AT MAX 

TB-,514~14 TB-,514~14 

FIG. 14 MEASURED NORMALIZED ADMITTANCE 
OF OPEN WAVEGUIDE TERMINATED WITH 
GROUND PLANE IN PLASMA JET, COMPARED 
WITH THEORY FOR UNIFORM PLASMA 

22 



low collision frequency plasmas, where the plasma conductance approaches 

zero around critical, the most important antenna admittance component in 

determining reflection coefficient is the conductance. It is seen in 

Fig. 14 that there is considerable discrepancy between the measured 

conductance and the uniform-plasma theory in the region around critical. 

These values are consistent with the low reflection coefficients found 

in both plasma jet and shock tube for (wp/co)--> 1. It is expected that a 

theory for nonuniform plasma with surface-wave contributions included 

will improve the agreement. 

These five data points were taken with profiles similar to 3a and 

3b in Fig. 7. It is expected that the higher VSWR measurements made with 

the thinner profiles correspond to values of the antenna conductance 

closer to the theory. 

The crossing from capacitive to inductive susceptance for the slot 

is seen (Fig. 7) by interpolation between the measured points to occur 

at a value of (w,/w)~ about 25s higher than the theoretically predicted 

value. The discrepancies between experiment and theory for both com- 

ponents of admittance are much smaller, but in the same direction as 

the discrepancies found by Meltz, Freyheit and Lustig' between theory 

and experiment for a radial-waveguide-fed gap in a conducting cylinder. 

Their theory did not take into account the interposition of the glass 

wall of their plasma vessel between the aperture and the plasma. 
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V RESULTS OF PATTERN AND TRANSMISSION EFFICIENCY MEASUREMENTS 

Patterns 

The patterns shown in Fig. 15 were made with a narrow-mouth quartz 

extension tube that gave slightly narrower profile than the narrowest 

(2a) shown in Fig. 7. According to Snell's law, a uniform infinite slab 

of dielectric with index of refraction, n, less than unity will focus 

rays from a source in it or behind it such that, beyond the slab, no 

rays will fall at angles greater than a critical angle, Qc = sin -1 n. 

The gross features of the two patterns with plasma (Fig. 15) show a 

marked reduction in signal beyond approximately the 

angle ac = sin -l(BmaJBoL since the real part of the index of refraction 

of a plasma is just p/PO. 

However, when the patterns were measured with thicker plasmas with 

gentler gradients (Fig. 16), this feature began to fill in, and for the 

thickest plasma used (Fig, 17), this feature is not discernible at all. 

Apparently, because of the lower gradients in the thicker profiles, 

the plasma acts less and less like a uniform slab. In addition, the 

considerable power escaping between plasma and ground plane for the 

thicker profiles tends to fill in the void as it radiates beyond the 

limited lateral extent of the plasma slab. Here, again, a close com- 

parison between experiment and a theory will require analysis that 

recognizes the nonuniformity and finite size of the plasma. 

The finer features of the measured patterns are felt to be 

inconsequential because of the reflections in a container of this 

kind. The pattern levels were compensated for the impedance mismatch. 

Transmission Efficiencv 

The dashed pattern and the bottom pattern in Fig. 16 were taken 

under the same plasma conditions (electron density at max = 1.2 times 

critical) except for the location of the plasma as determined by moving 

the quartz extension tube away from the antenna face. For the solid 
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line, the tube was against the antenna Pace, but Par the dashed pattern, 

it was moved out until the VSWR was unaffected by the plasma -- about 

1.5 cm away. Since the plane-wave losses in traversing such a plasma (at 

normal incidence) are calculated to be no greater than about 10 dB, the 

difference between the two patterns is interpreted as a demonstration of 

the loss in (far-field) transmission efficiency due to the plasma in the 

near field, Several such transmission measurements were made with the 

receiving horn fixed at $ = O", using both the Teflon and BN antennas 

confronted by thinner plasma profiles than used for the Fig. 16 patterns. 

The results of these measurements are shown in Fig. 18. Also shown as a 

function of (LUG/" are predicted plane-wave losses, calculated on the 

basis of profile 2b of Fig, 7. It is felt that the near agreement between 

this calculation and the measured losses with remote plasma is a measure of 

the accuracy of the ion probe diagnostics when profiles are measured. 

The difference between attenuation for the two antennas with the 

close profile is attributable to the greater susceptibility of the 

Teflon antenna to plasma effects because of its higher near-field levels 

in free space. Figure 19 is a plot of signal received by a 5-mm long 

dipole used to probe the fields of the three antennas used in the 

measurements. Equal power was delivered to the antennas. The two 

dielectric-filled antennas follow approximately the rule-of-thumb that 

the signal falls by 10 dB one E-plane aperture dimension away from the 

face. 
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VI CONCLUSIONS AND RECOMMENDATIONS FOR FUTURE WORE 

The measurements of impedance, transmission efficiency, and patterns 

show that efforts should be made in practice to exclude plasmas from the 

near fields of high performance transmitting antennas. On the other 

hand, if diagnostics of a plasma are desired, the reflection coefficient 

measurements have shown that the greater sensitivity can be achieved by 

maximum "filling" of the near-field region. Because of the demonstrated 

effects of a small nonuniform boundary layer, it is necessary to develop 

suitable analytical models before the potential accuracy of electron 

density diagnostics by this technique can be thoroughly evaluated. With- 

out such models, the best generalization from the reflection coefficient 

data concerns the steep slope of II?1 vs (uI~/uI)~ rather than the absolute 

value of II?/. The steep slope appears to determine the electron density 

within a factor of about two for these low collision frequency plasmas. 

In the open waveguide measurements, it always occurred between 

("ip/w) 2 = 1.0 and 2.0, while with the two dielectric-filled slots it 

always occurred in the region 0.25 ,< (W$UI) 2< - 0.5. 

As a result of these tests to date, it is important to compare 

reflection coefficient measurement with transmission (attenuation) measure- 

ment as diagnostic tools for flight tests: 

(1) Both measurements are useful over a limited range of 
electron density around the critical level. 

(2) Collision frequencies higher than UJ may extend this 
range of electron density somewhat, but accuracy may 
suffer. 

(3) Since transmission also integrates over nonuniformities, 
the accuracy depends on knowledge of the profile. 

(4) If the plasma cannot be excluded from the near fields 
of the transmitting antenna, the several effects 
discussed in this report (mismatch, pattern changes, 
transmission efficiency) must be taken into account. 

(5) The transmission measurement will usually be preferable 
above critical (until dynamic range is exceeded) because 
the reflection coefficient is quite flat there. , 
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(6) Because of pattern effects, transmission between 
vehicle and ground is subject to important errors in 
knowledge of vehicle orientation that do not affect 
the reflection measurement. 

It is concluded that either technique presently leaves much to be desired 

as a general tool in flight test diagnostics. 

It is noteworthy that the greatest success in achieving agreement ------ - --. _.___~ 
between plasma theory and laboratory measurements of the kind reported __- ---. 
here has been found by those investigators who used either scaled 

- l-o--' - -----~ 
11 

dielectrics or wire grids instead of plasma in their experiments. --_.-- 
Prominent by their absence in such experiments are (1) nonuniformities in 

the near field and (2) extraneous plasma containers. In the impedance tests 

reported here, the containers were of minor importance because the entire 

experiment was designed to be performed within the plasma container. However, 

since it is inevitable that plasmas will exhibit the boundary layer 

nonuniformities, it is very important to develop a more sophisticated 

theory to compare with these experiments. 

More complete data appears necessary to complete a comprehensive 

study of these effects to accompany the theoretical developments. 

Future tests should include: --- -_ ---- 

(1) 

(2) 

(3) 

(4) 

total impedance measurements rather than-reflection _I_- ._~_ ----.. 
coefficient alone; -- ____...__- -.--~- .- 
Measurements with antennas purposely tuned for low ~___ 
reflection coefficient in free space, thereby inGreasing __- --~ --. 
the-range--of reflection coefficient available for plasma 
effects; 

~.- -~-.~. 
-- 

higher collision frequency measurements; and .- - 
use of antennas specifically designed for.such tests or for .---- _---- _ .-- 
re-entry vehicles. ___--- 
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